
So�ware Test Automation
Solution Buyer’s Guide

Software Test Automation Solution Buyer’s Guide

Software testing plays an essential role in application development. Testers seek to

identify defects before they appear in production, validate that functionality works as

intended, and help deliver a quality product that maximizes customer satisfaction. But

despite its importance, the rapid pace of application development often means that

time for testing is limited.

Why Adopt a Test Automation Tool?

To ensure that you select the best automation tool for your needs, it’s important to
consider the following areas:

Return faster results from testing, to avoid becoming a bottleneck in

the release cycle

Extend test coverage while controlling costs

Reduce repetitive tasks and allow testers more time for deep exploration

of the application under test

There are many reasons to adopt a test automation tool. Perhaps you’re looking to:

Goals

Readiness

Resources

Tool Analysis

Vendor Selection

This Buyer’s Guide is designed to help you understand these key areas so that you can select

the right solution for your organization.

4

	 Section 1: Goals

To be successful, any project must begin with clear goals. To develop these goals, first define

the problem that you want automation to solve and identify the benefits that you hope to

gain by automating. Use the questions in this section to help you define a limited number of

key goals, which you should then be able to summarize in a brief statement.

Obvious problems that point to a need for test automation include finding

defects in production, or delayed releases due to defects. But there may

be other issues that automation can help resolve, such as a lack of motivation‚

in the testing team due to repetitive tasks, errors in data entry or step

completion during testing, delays in resolving defects due to communication

issues between testers and developers, rising costs of testing including

costs to execute tests and costs to produce test artifacts, inability to test at

scale, and reduced time for exploratory and UX testing.

	 What problems are you trying to solve by automation?

Make a list of the benefits you expect, and then prioritize them. Possibilities

include more complete testing within an allotted time period, increased

customer satisifcation by not releasing repetitive bug fixes, and reduced cost

of development since defects are identified faster. You might also expect to

see a reduced cost of application support due to fewer defects released.

	 What benefits do you hope to gain?

5

Risks of not automating could include any of the logical outcomes that could

occur from the problems you identified not being resolved – i.e., increasing

defects in production which lead to support calls and decreased customer

satisfaction, turnover among staff or lack of output from unmotivated staff,

lower quality in functionality and UX due to a lack of time for manual

testing, etc. Use a risk analysis matrix to identify the most likely risks and to

prioritize them according to the potential impact on your organization.

Do you plan on automating your functional testing, regression testing, end-

to-end testing, performance testing? The test automation pyramid suggests

the ratio of unit, interface, and UI tests that your project should have, but this

may need to be adjusted based on the needs of your particular application.

A stable legacy application may benefit from a higher number of UI tests, for

example. The scope of testing will place requirements on the automation

framework that you will need.

	 What is the scope of testing to be automated?

One of the biggest challenges in creating a plan is to uncover the underlying

assumptions. Refer to the next section for questions that can help uncover

assumptions and ensure that they have been addressed in the automation

framework that you choose.

	 What assumptions need to be validated?

	 What are the risks of automating? Of not automating?

Whether you automate or not, this choice will have an impact on your

organization. Possible risks of automating include a failure to get a return on

investment (ROI) for the time, effort, and money spent on automating. Money

includes licenses, hardware, training, as well as the lost opportunity cost.

6

How stable is your overall application?
It should have some measure of stability to gain the most ROI from automating your

integration tests, end-to-end tests, and functional UI tests

How many defects are being identified in UAT?

• How many defects are making it through to production?
• How many support calls are you getting that are related to defects?

Is there a trend in the number of defects per release?
A rapid or sustained increase in the number of defects suggests a greater need to adopt
a test automation strategy.

What types of defects are occurring?

• User interface/user experience?

• In backend processing, integration, security, performance?

Are you satisfied with how you are capturing and tracking defects?
• Is an automated defect tracking solution in place? If not, how do you plan to handle

defects that are identified in a future automation scenario?

How many test cases are being performed in each cycle?

• How many test cases do you plan to execute in a given cycle? And are you able to
meet your goals, or do you often run out of time or resources?

• How often are test cases repeated? The more you repeat a given test case, the greater
the potential benefit of automating it. It may be helpful to use a spreadsheet such as
the Ranorex test case ROI calculator to estimate the potential ROI from automation.

• Are your existing test cases documented well enough to be automated? The best test
cases to be automated have well-defined scenarios, unambiguous pass/fail criteria,
and represent actual customer use cases.

Section 2: Readiness

Review current state of your release cycles to verify that your organization is ready to

evaluate and adopt an automation solution.

7

How much time do you have for testing in a typical release cycle?
• Is testing currently acting as a bottleneck?
• Is test coverage insufficient?

What percentage of tests in each cycle are regression tests?
• Regression tests are great candidates for automation, since they are often repeated.

What level of test coverage is needed for priority/high-risk features?

Are tests often being repeated for different data values?
• An automated test can rapidly execute tests from a data source such as a CSV file or a

SQL database, with a high degree of accuracy.

Are you testing on multiple platforms?

• Performing cross-browser or cross-device testing?

• Does your application include multiple technologies, such as HTML5 plus non-HTML
elements, or a combination of cloud-based and backend services?

What reports are needed?

• Typical detail-level reports include the number of test cases executed, along with
pass/fail rates and the number and type of defects reported.

• Summary reports may include information like overall costs of each testing per cycle,
percentage of tests executed, and defect resolution rates .

How does your current mix of testing match with your needs?
Load testing, security testing, compliance testing, user experience, etc.

8

Section 3: Resources

Do you have existing resources that you could leverage for automated testing? What additi-

onal resources might be necessary for evaluating and then eventually adopting a solution?

Below are the types of resources that are typically needed for a test automation project:

Is there hardware available for testing? In addition to having physical or

virtual endpoints available for testing, do you have the necessary support

from your operations team?

 Hardware

Do you have a dedicated space for a project team to collaborate on the

selection process, and for an eventual proof of concept (links below)?

Typically, teams work better when they are in proximity to each other. If

that’s not possible – for example, because key team members are in remote

locations – do you have a platform for virtual meetings?

 Space

Typical costs may include not just software licenses, but also the hardware

infrastructure to develop and execute automated tests, and training for your

staff. It may be tempting to turn to an open-source solution because budget

isn’t available for purchasing a commercial solution; however it is important

to compare the total cost of “ownership” including the time to build your own

framework, higher technical expertise required for your team, and a longer

time required to develop automated tests.

 Budget

9

Is there staff with test automation expertise? Successful automation projects

are typically driven by one or more “champions.” If you have insufficient ex-

perience on the team, what is the availability of training for existing staff using

existing resources?

 Champions

RECORD PLAY

MOUSE

BROWSER

KEY SEQUENCE

CLICK

OPEN

RECORDING_1 RECORDING_2

VALIDATE ATTRIBUTE EQUAL

REPORT SCREENSHOT

10

Section 4: Tool Analysis

After reviewing your goals, readiness, and available resources, the next step is to begin

evaluating test automation tools. The diagram below identifies key considerations when

evaluating test automation tools.

What platforms are
supported for testing?

What platforms
are supported for test

development?*

Are best practices supported?

• Layers of abstraction for UI object identification

• Separation of object definitions from test procedures

�• Page Object patterns for web testing

Desktop Web Mobile

What controls
are supported

natively?

Is cross-browser
testing supported for
all major browsers?

Can you
test on iOS and

Android?

What features for collaboration
are available?

source control shareable objects reuseable code modules

Does it offer tools that non-
�technical testers can use (such� as
record-and-playback), in addition
to advanced tools for those with

programming experience?

How difficult is the
tool to learn?

*Does not need to be the same as the
endpoints on which you will execute

your tests

11

Ease of customization:
• How flexible/customizable is the tool?

• Does it offer a full IDE and/or an API?

Can you use CSV files, native Excel files, or
SQL data connectors? Will you be able to connect

to your production� database, if desired?

What data sources are supported
for data-driven testing?

What kind of execution �
speed should you expect to see

from an automated test?

Tests fail if they execute
more �quickly than

the AUT is �capable of
responding.

A tool should offcer fast
execution time, but �also

be able to fine-tune
�waits for UI elements.

What integrations
are available?

Built-in reporting features?
• Can you customize the report?

• Is a license required to access the test run report?

Import Options
Is it possible to import test
cases from another source?

What import formats are
supported?

Development
language

Is expertise in a standard
or proprietary language

required?

Scalability

Can you scale up testing,
�including distributing
onto �multiple devices

in parallel?

12

What pricing options are
available? Are licenses

permanent or pay-as-you-go?

What is included in the license
– software updates, support,

training, implementation?

Pricing Licensing

Does the vendor offer pre-sales
support and/or assistance to
complete a proof of concept?

Proof of Concept

Does the vendor seem to un-
derstand the needs of testers?
Does the vendor use their own

tool internally for testing?

Can the vendor provide you
with a list of references –

current users willing to discuss
their experiences?

Industry Expertise References

How long has the vendor been
in the industry? What awards
or recognition has the tool or

vendor received?

Reliability

Are there services like
consulting, training, technical

support available?

What technical support
options are available? How

do current customers rate the
technical support team?

Additional Services Technical Support

Is there an active user
community where you can

exchange ideas and best
practices?

Community

Section 5: Vendor Selection

The ideal vendor will not just sell you an automation tool, but will be a full partner in

ensuring that your test auomation project is a success. Below are areas to consider when

selecting a vendor.

13

Section 6: Next Steps

Do a proof of concept to prove that the technology works in your environment.

Once you have completed your analysis, but before committing to a solution, you should

conduct a Proof of Concept (PoC) involving two or three tools. This will give you the oppor-

tunity to demonstrate how these tools actually perform in your environment. You will want

to prepare a representative subset of example test cases to automate. Be sure to consider

the following questions:

The PoC will be conducted in-house, so you will likely need to provide a

workspace, access to a test version of your application, dedicated testing

hardware, etc. Be sure to allow sufficient time to get these resources in

place before beginning the PoC.

What resources do you need to provide, and what will the vendor provide?

It‘s important to identify one or more “champions” who will drive the

project. Typical team members include a decision-maker (often the QA

manager), product team leader, sales engineer from the vendor, and a com-

bination of manual testers or test automation personnel from your organiz-

ation who will be essential in analyzing the ease-of-use and effectiveness of

the potential tool.

Who will be involved in the PoC?

How will you document your experiences during the PoC?

Establish a regular review process such as brief daily meetings. Consider

setting up a tool for capturing feedback and sharing results, such as a shared

spreadsheet with a scoring rubric.

14

Here is where you “define success.” Set a clear beginning and end to the

PoC. This may be a set timeframe, such as two weeks, or after automating a

number of test cases, running a number of test cycles, etc.

How will you know when you are done?

Select realistic scenarios based on the risk analysis that you conducted

earlier in the planning process.

What test cases will you automate?

Ideally, a successful PoC will be followed by adoption of your selected solution. Ranorex

experts are available to assist you with planning a POC and experiencing test automation

success.

The Ranorex support team is really great. We were facing issues while automa-

ting one of the thin client applications at YRC. We explored a lot of software

including HP UFT, Smartbear TestComplete, but we were unable to track elements

for our application. Ranorex engineers developed a new plugin for us which solved

our problem and we completed automating that thin client application. It is a

really good experience working with Ranorex!

Shantanu K, QA Automation Engineer
Transportation/Trucking/Railroad company 10,001+ employees
Review verified on Capterra

15

About Ranorex

From our founding in 2007, Ranorex has been dedicated to empowering software teams

with comprehensive UI testing tools that can handle even difficult-to-automate interfaces.

Ranorex products are supported by a team of professionals dedicated to your success.

Ranorex is a member of the Idera, Inc. family of testing tools.

Our all-in-one solution, Ranorex Studio, supports UI test automation across desktop, web

and mobile devices. Test automation experts can use Ranorex Studio’s full IDE, with its open

APIs and tools for intelligent code completion, refactoring, debugging and more. Automation

novices can use Ranorex Studio’s capture-and-replay tools and built-in methodology to

rapidly build reliable, maintainable tests while expanding their automation skills. All members

of cross-functional teams can collaborate on solutions by sharing reusable object repositories

and test automation modules. Ranorex Studio includes built-in Selenium WebDriver integration

for scalable cross-browser testing: execute tests in parallel, on a Selenium Grid or using a

cloud platform. Perform data-driven testing with CSV files, Excel files, or SQL data connectors.

Ranorex Studio integrates with Jira, Jenkins, TFS, Git, TestRail and many more.

